
May 1999 The Delphi Magazine 47

Is Delphi Running?
by Brian Long

Here is a question that was sent
to the Delphi Clinic not so long

ago:
I have been searching high and

low for examples of how to detect
when my program is running from
within the IDE and when it is not. So
far, all I have found are references to
things that I do not know much
about. I know this is what a lot of
developers do with shareware/
trialware programs, allowing all
functionality as long as the program
is being launched from the IDE. I
need similar functionality, but
because I need to simulate my user’s
environment in code when running
on my machine, but I don’t want the
application to do any simulation
when it is out in the field on users’
machines. Can you help?

This technique does indeed get
used quite a lot. It is very conve-
nient for Delphi component writers
to offer their full software to
people, with the restriction that it
only works if Delphi is running as
well. This saves on the time neces-
sary to develop crippled versions
of software, and allows potential
purchasers to check out the full
functionality on offer. Dave Jewell
focused on this angle in Issue 43
with Protecting Your Intellectual
Property in his Beating the System
column.

However, as you can see from
the question, this type of require-
ment is not only about providing
trial versions of software. It can
also involve having your applica-
tion act differently when running
from the IDE for other reasons. In
the case in hand, the questioner is
developing an application for a
target environment of his client.
Since he does not have all the soft-
ware or hardware facilities that his
client does, he wishes to simulate
some of it, so that, as he develops
the application, he can still test it
out on his own machine.

The question itself has a number
of variations. Let’s take them one
at a time.

Different Execution
How can I have some code that exe-
cutes differently when installed in
the Delphi IDE compared to when
used in an application?

This may or may not apply to the
questioner. The question relates to
software that can be installed into
Delphi, as opposed to being
launched from Delphi. So, it relates
to code that resides in design-time
packages in Delphi 3 or later.

Incidentally, in truth all the
packages that you create will be
runtime packages, because they
contain compiled code. The prime
distinction between design-time
and runtime packages is that
runtime packages will be used by
applications that you create, or
indeed will be used by design-time
packages. Design-time packages
are those that will be used by an
application created and compiled

by Inprise, which is Delphi in our
case.

So, to install some code into
Delphi, you compile your unit into
a design-time package (or Delphi’s
component library in the case of
versions 1 and 2). Code to be
installed into Delphi would include
the implementation of some com-
ponents, or property and compo-
nent editors, or experts, or IDE
add-in tools that can manipulate
and customise the Delphi environ-
ment (see my article in Issue 27 on
Delphi 3 Add-In Packages).

When Delphi loads the package,
or component library DLL, it calls
the Register routine from each
unit, if one exists. So you can
implement the Register routine to
set some flag, as in Listing 1, which
will then indicate if your code is
running in the Delphi IDE, or in an
independent application. Various
other parts of your code can check
the flag like this to decide where
they are:

if RunningInIDE then
{ IDE version of code}

else
{ Other code}

Of course, if the code is part of a
component class, this flag is pretty
redundant since you can check
whether csDesigning is a member
of the ComponentState set property
to find out the same information:

if csDesigning in
ComponentState then
{ IDE version of code}

else
{ Other code}

Delphi Installed?
How can I tell if Delphi is installed
on the computer my program is
running on?

Delphi 1 uses an INI file in the
Windows directory called
DELPHI.INI. Checking for the
existence of the file would do the
job, although this in itself is not
foolproof: Delphi 1 could have
been deleted. Listing 2 takes the
approach of reading something
from the INI file that should be
there. If it gets a sensible response,
the INI file exists. The value read is

interface
const
RunningInIDE: Boolean = False;

procedure Register;
implementation
procedure Register;
begin
RunningInIDE := True

end;

➤ Listing 1

function Delphi1Exists: Boolean;
begin
with TIniFile.Create('DELPHI.INI') do
try
//If entry is not in INI file, this will return
// a file name of '' which will not exist
Result := FileExists(ReadString('Library', 'ComponentLibrary', ''))

finally
Free

end
end;

➤ Listing 2

48 The Delphi Magazine Issue 45

the path of the Delphi 1 component
library. A test is also made for the
presence of the component library
to ensure Delphi 1 is still installed.

All 32-bit versions of Delphi store
their details in the registry rather
than INI files. Typically, the
per-user details are stored in

HKEY_CURRENT_USER\Software\
Borland\Delphi\X.0

where X is the major Delphi version
number. However, if another user
logs into Windows, this registry
path may well not exist (as the user
may not yet have run Delphi). So a
more reliable approach is to check
the per-machine details in

HKEY_LOCAL_MACHINE\Software\
Borland\Delphi\X.0.

As well as existing regardless of the
Windows user (remember one
copy of Windows can have differ-
ent users logging into it at different
times), this has an additional
advantage. There is a value under
this key that gives the full path to
the Delphi executable file. Unfortu-
nately, the name of this value is
inconsistent: Delphi 2.0, Delphi 3,
Delphi 4. To check that Delphi
really is installed, you can verify
that the referenced file does
indeed exist. Cue Listing 3 (which,
incidentally, has only one outer-
most try..finally..end statement
where it should really have three:
this was simply for brevity). You
will notice that it has to loop
through the registry entries for any
Delphi key that it finds, looking for

➤ Listing 3

one that starts with Delphi to over-
come the inconsistency mentioned
above.

IDE Running
How can I tell if Delphi is running
or not?

To find out if the Delphi IDE is
running, we need to identify
whether any of the IDE windows
are open on the desktop. You
should refer to the aforementioned
article by Dave Jewell for a variety
of ways to accomplish this by
searching for window captions.

Launch Party
How can I tell if Delphi launched
my application?

There are a couple of app-
roaches commonly used to answer
this question. We will look at both
of them.

One of the original efforts in this
direction revolved around under-
standing the operation of Delphi

1’s debugger. The Revolutionary
Guide To Delphi 2 (various
authors, published by Wrox Press)
discusses this subject in Chapter
15.

When the integrated debugger
launches an application, it inserts
some bytes in some internal data
structures of the program to allow
the debugger to be notified of cer-
tain things happening. An applica-
tion can examine these data
structures, and identify if the
debugger was active when the pro-
gram was launched. This almost
equates to a test of whether the
IDE launched your application. I
say ‘almost’ because if integrated
debugging is disabled the program
will assume that the IDE is not
running if using this test alone.

Testing for the debugger in
Delphi 1 is woefully more involved
than in 32-bit Delphi, but let’s

function Delphi32Exists: Boolean;
var
Reg: TRegistry;
Keys, Values: TStrings;
KeyLoop, ValueLoop: Integer;

const
DelphiPath = 'Software\Borland\Delphi\';

begin
Result := False;
Reg := TRegistry.Create;
Keys := TStringList.Create;
Values := TStringList.Create;
try
Reg.RootKey := HKEY_LOCAL_MACHINE;
if Reg.OpenKey(DelphiPath, False) and Reg.HasSubKeys
then begin
//There may be more than one Delphi section
Reg.GetKeyNames(Keys);
Reg.CloseKey;
for KeyLoop := 0 to Keys.Count - 1 do
if not Result and Reg.OpenKey(DelphiPath +
Keys[KeyLoop], False) then

try
Reg.GetValueNames(Values);
for ValueLoop := 0 to Values.Count - 1 do begin
Result := (Pos('Delphi', Values[ValueLoop]) >
0) and
FileExists(Reg.ReadString(
Values[ValueLoop]));

if Result then Break
end;

finally
Reg.CloseKey

end
end

finally
Reg.Free;
Keys.Free;
Values.Free

end
end;

type
{ Used by TDebugRec }
TExceptionKind =
(evNull, evRaise, evExcept, evFinally, evUnexpected, evTerminate);

PDebugRec = ^TDebugRec;
TDebugRec = record
dhMagic1,
dhZero,
dhMagic2,
dhHookProc,
dhDebugHooked: Longint;
dhKind: Word; { Use TExceptionKind enumerated type above }
dhAddr,
dhCookie,
dhNameLen,
dhName,
dhMsgLen,
dhMsg,
dhWantException,
dhDoneExcept: Longint;

end;
const
DebuggerHook = $24; { Offset in DS of pointer to debugger data }

{ Checks if debugger is active (it swallows notifications) }
function DelphiDebuggerRunning: Boolean;
begin
Result := (PrefixSeg <> 0) and
(LoWord(PDebugRec(Ptr(DSeg, DebuggerHook)^)^.dhDebugHooked) <> 0);

end;

➤ Listing 4

May 1999 The Delphi Magazine 49

function DelphiDebuggerRunning: Boolean;
begin
Result := Bool(PrefixSeg) and Bool(PWordArray(MemL[DSeg:36])^[8])

end;

function DelphiDebuggerRunning: Boolean;
begin
Result := DebugHook <> 0;

end;

➤ Above: Listing 5 ➤ Below: Listing 6

function DelphiLaunchedMe: Boolean;
var
Wnd: HWnd;
CCaption: array[0..255] of Char;
FileName, Caption: String;

begin
Result := False;
if DelphiRunning then begin
{ Get Delphi's main window }
Wnd := FindWindow('TAppBuilder', nil);
{ Read its caption }
GetWindowText(Wnd, CCaption, SizeOf(CCaption));
{ Translate the C string into a Pascal string, upper cased }
Caption := UpperCase(StrPas(CCaption));
{ Find the root part of this project name... }
FileName := ExtractFileName(Application.ExeName);
{ ...without the extension }
FileName := Copy(FileName, 1, Length(FileName) - 4);
{ If Delphi has my project name in its caption, then we win }
Result := Pos(FileName, Caption) <> 0;

end
end;

struggle through it. The test relies
upon a record structure whose
only documentation is its use in
the runtime library. The record is
used to interface to a debugger
when exception-related events
occur, and various operations are
required of it. It is referenced in the
SysUtils unit, in addition to the
EXCP.ASM exception handling
assembler runtime library source
module and the SE.ASM assembler
include file.

A Pascal version of the assem-
bler structure, along with a suit-
able function, is shown in Listing 4.
So the address of a TDebugRec
record is $24 bytes into the data
segment, whose dhDebugHooked
field (or at least the low byte of it)
gives the game away.

If that all looks too excessive,
then we can remove all the type
definitions and cut to the chase.
Listing 5 shows a much shorter
version of the same thing. Also,
Listing 6 shows the 32-bit Delphi
equivalent: the System unit now
defines a global variable,
DebugHook, that surfaces this infor-
mation.

On top of these approaches, you
could also use Dave Jewell’s sug-
gestion for locating the parent pro-
cess of your application. This will
be a foolproof way of seeing
whether Delphi launched it, but
does require you to write markedly
different logic for Windows NT and
Windows 95/98, which could be
troublesome.

So, where are we now? We can
check whether the IDE launched
our application, or whether it prob-
ably did not, by identifying if the
integrated debugger is in control of
our application. If it is, then Delphi

➤ Listing 7
(or some suitable replacement
debugger) launched us.

An alternative approach to this
problem, that could be considered
more reliable, would be based
upon this fact: if Delphi launches
an application, then whilst the
application is executing Delphi still
has the project loaded. A side
effect of Delphi having a project
loaded is that the project title is
written in the caption bar on
Delphi’s main window. Listing 7
has code that locates Delphi’s
main window, reads the caption
and looks for the app’s name.

The catch to this routine is that if
Delphi launches an application
when integrated debugging is dis-
abled, there is nothing stopping
the user loading a new project:
Delphi will not complain. As well as
this, if the user has several Delphi

sessions active, this code will
simply find the first Delphi main
window, which may not be the cor-
rect one. However, you may agree
with me that these disadvantages
are reasonably minor.

The code from all these listings
is in the project IDERun.Dpr on the
disk, to save you typing it in. Figure
1 shows what it looks like after
having been launched from Delphi
4, with integrated debugging dis-
abled, on a machine with Delphi 1
also installed.

Thanks to Søren Jensen for com-
ments used in this article.

Brian Long is an independent
consultant and trainer. You can
reach him at brian@blong.com
Copyright @ 1999 Brian Long.
All rights reserved.

➤ Figure 1

	Different Execution
	Delphi Installed?
	IDE Running
	Launch Party

